Mehr Bildschärfe durch künstliche Intelligenz - Super-Resolution

// 07:45 Mo, 28. Nov 2016von

Wir hatten die Diskussion ja schon ansatzweise öfter bei uns im Forum: Nämlich inwieweit künstliche Intelligenz in Zukunft mittels tiefschichtiger Neuronaler Netze die Bildqualität von Kameras signifikant verbessern könnte. Ein Gebiet ist dabei die Forschung um sogenannte Superresolution-Algorithmen. Hierunter versteht man allgemein das Hochskalieren niedrig aufgelöster Bilder. Galt bis zum letzten Jahrzehnt noch das Dogma, dass bei einer Vergrößerung der Auflösung kein Detail hinzukommen kann, was nicht im Ursprungsbild liegt, befinden wir uns seit einigen Jahren in einem Paradigmen-Wechsel. Das Schlagwort heißt Superresolution.


Mittels Superresolution versuchen die Algorithmen statt reiner Interpolation Strukturen und Formen im Bild zu erkennen und dann bei der Vergrößerung schlüssig zu ergänzen. Die Superressolution-Methoden des letzten Jahrzehnts haben dabei einige Nachteile: In Bewegtbildern kann es leicht zu springenden Mustern kommen, wenn der Algorithmus in zwei zeitlich aufeinanderfolgenden Bildern am selben Ort unterschiedliche Muster zu erkennen glaubt (z.B. durch Rauschen oder leichte Bewegung). Die Besten der klassischen Superresolution-Algorithmen "klappern eine regelrechte Muster-Datenbank ab", die dann entscheidet, welches Muster bei der Vergrößerung am besten passen könnte. Das kostet jedoch Unmengen Zeit.



Google hat nun (unter dem Projektnamen RAISR) in seinem eigenen Forschungs-Blog Ergebnisse mit neuronalen Netzen veröffentlicht. Die Google Forscher sind damit bei weitem weder die einzigen, noch die ersten, haben aber schöne Demo-Bilder im Artikel, die zeigen, wohin die Reise geht.



Das untere Bild enthält künstliche Zusatzinformationen, die im Original (oben) nicht vorhanden sind.
Das untere Bild enthält künstliche Zusatzinformationen, die im Original (oben) nicht vorhanden sind.


Die Vorteile der Neuronalen Netze gegenüber Superresolution-Algorithmen klingen imposant: Mindestes eben so gute Ergebnisse wie die besten Algorithmen, aber 10 bis 100 mal schneller. Und auch die Muster-Sprung-Problematik wurde dabei deutlich reduziert, weil die Netze Annahmen über ganze Objekte fällen, die sie zu erkennen glauben. Hat die KI beispielsweise mal ein Auge erkannt, dann wird dieses nach einem Schema ergänzt, wie es die KI schon in tausend anderen Bildern zuvor gelernt hat. Selbiges gilt für Millionen andere Formen und Dinge.



Die Kritik folgt natürlich auf den Fuße: Ist denn das dann noch die Realität, die in einem vergrößerten Bild zum Vorschein kommt? Genau genommen nein, aber eine plausible visuelle Ergänzung einer "wahren" Grundstruktur.



Anders betrachtet macht das menschliche Gehirn ja auch nichts anderes. Vieles was ihm bekannt vorkommt, wird gar nicht näher wahrgenommen, sondern ungeprüft als "schon klar" abgehakt.



Aber nun viel visuelles Vergnügen bei der Lektüre des Google Blogs. Und wer noch mehr sehen will, findet hier in einem PDF noch mehr interessante Bilder aus der SR-KI-Forschung.


Aktion
PS. slashCam verschenkt Gutschein-Codes (noch bis 30.6.2024)
Wer beim Fachhändler Teltec für mindesten 300 Euro (netto) einkauft, kann 20 Euro sparen mit dem Gutscheincode SLASH20CAM, ab einem Mindestbestellwert von 500 Euro netto mit dem Code SLASH50CAM sogar 50 Euro - mehr Infos .
Ähnliche News //
Umfrage
    Meine nächste Kamera wird eine










    Ergebnis ansehen

slashCAM nutzt Cookies zur Optimierung des Angebots, auch Cookies Dritter. Die Speicherung von Cookies kann in den Browsereinstellungen unterbunden werden. Mehr Informationen erhalten Sie in unserer Datenschutzerklärung. Mehr Infos Verstanden!
RSS Suche YouTube Facebook Twitter slashCAM-Slash